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Abstract. To support patent knowledge reuse for product concept design, multi-granularity representation 

of patent knowledge should be taken into consideration. Traditionally, an ontology model called TCO 

(Techspecs Concept Ontology) is used for representing the hierarchical architecture of a product, which 

consists of components layer, function modules layer, and product layer. However, the interactions such as 

the context relevance among components are ignored in the TCO model. In this paper, a modified model 

called PSG-TCO is proposed, where the PSG (Patent Semantic Graph) part can be used to capture 

components’ interactions. Based on the PSG-TCO model, an automatic knowledge extraction method is 

proposed to construct PSG-TCO instances from a large number of patent texts. All of the PSG-TCO 

instances form a multi-granularity knowledge base, which can be used for engineering knowledge retrieval, 

design concept discovery, and providing potential innovation stimulus. 
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1. Introduction 

The development of product innovation design is an important aspect to improve the innovation ability 

comprehensively. It not only affects the enterprise competitiveness, but also plays a vital role in 

industrialization level of the country. In the process of product design, especially in the conceptual design 

stage, the divergent thinking of designers is the main influence factor to form innovation. However, such 

divergent thinking is usually limited due to the thinking pattern formed by the designer’s professional 

knowledge or personal experience. Therefore, how to broaden and explore the design space is the key 

problem of product innovation design. 

 To deal with this problem, it is traditional to work cooperation among a few designers. Methods such as 

brainstorming [1] and 6-3-5 [1] are used to explore the design space. However, these methods often need to 

consume large manpower and time resources, and increase the management cost [2]. With the development 

of artificial intelligence technology in recent years, data and knowledge driven methods have become the 

mainstream technology solutions to design space expansion problems. There are three main advantages of 

such methods: (1) external knowledge can increase the objectivity during design process; (2) huge 

knowledge base can effectively cover the design space; (3) automated programs can provide accurate and 

rapid creative knowledge retrieval services. The three advantages inspired a lot of works about knowledge-

based design methods, and the basis of these works is to construct a knowledge base with potential 

innovation stimulus ability. 

The data sources for the knowledge base can be varied among related works, such as internet resources 

[3], industrial data [4], scientific papers [5], and patent database [6].The data sources for knowledge base can 

239

ISBN: 978-981-18-5852-9

WCSE 2022 Spring Event: 2022 9th International Conference on Industrial Engineering and Applications

8doi: 10.18178/wcse.2022.04.02



  

be varied among related works. Compared to other data sources, the design knowledge contained in patents 

is more systematic and organized, especially for the invention patents. From the micro aspect, invention 

patents contain a wide range of design knowledge about products, functions, structures, configurations, 

working principles and operating mechanisms. From the macro aspect, invention patents are organized by 

the IPC classification system, cover all technical fields and accumulate over time. Such advantages make 

invention patents a good data source to build the knowledge base for supporting engineering design [7]. 

Representation of knowledge is the key issue in knowledge base construction and it should be decided 

based on the data source and application needs. Eventually, different representation will lead to different 

extraction, storage and retrieval method of the knowledge base. Given the data source and the application 

needs, the representation of knowledge should be designed carefully. For example, to classify or cluster the 

patents for recommendation, the representation should cover the main information of the whole patent or 

abstract text, which could be bag-of-words [8], tf-idf [9], topic distribution [10], and other deep language 

model semantic vectors [11]. Those representation methods can be used for inspiring designers in document-

level. For knowledge-based design, the representation should be more detailed, easy to read and understand. 

Semantic networks or knowledge graphs are used increasingly in various activities of design process [12]. 

WordNet [13] and ConceptNet [14] are the most often used public semantic networks for supporting design 

activities [12]. However, these two knowledge bases are built in general field and not focused on engineering 

design. Semantic networks built with invention patents can be focused on engineering design, like B-Link 

[12] and TechNet [7]. These semantic networks are all supporting engineering design in term-level. 

There are lots of patent knowledge bases that could be used to support designers to explore the potential 

design space and get new ideas from existing patent knowledge at different levels, i.e., the document level 

and the term level. However, the architecture of patent products is ignored in most related works. The 

architecture of a product can be represented by TCO, an ontology model which states a product can be 

decomposed into three layers: components layer, functional modules layer, and product layer [15]. 

Components are the basic physical units of a product. A functional module consists of a few components and 

has its own specific function to support the whole product. A product consists of a few different functional 

modules. However, traditional TCO can’t capture the interactions among components and functional 

modules because of the tree architecture. In this paper, we propose the PSG model to deal with the 

interactions because graphs have natural advantages in representing relationships. In addition, PSG can be 

combined with TCO to form a new ontology model called PSG-TCO, which is able to capture both the 

hierarchy architecture and the interactions of a patent product. Based on the PSG-TCO model, we propose an 

automatic knowledge extraction method to construct PSG-TCO instances from a large number of patent texts. 

All of the PSG-TCO instances form a multi-granularity knowledge base, which can be used for engineering 

knowledge retrieval, design concept discovery, and providing potential innovation stimulus. 

2. Knowledge Representation 

We propose a multi-granularity knowledge representation and automatic mining method for patent texts 

in this paper. To capture patent product architecture and inner interactions, we propose the PSG model and 

combined it with the traditional TCO model, which form a new ontology model called PSG-TCO. Based on 

the PSG-TCO model, we propose an automatic knowledge extraction method to build PSG-TCO instances 

from a large number of patent texts. In this section, we will describe the detailed definition of the PSG-TCO 

model, and then give out the framework of the proposed automatic knowledge extraction method in the next 

section. 

The traditional TCO model treats the product architecture as three layers: the components layer, the 

function modules layer, and the product layer. Components are basic physical units of the product. A 

function module consists of a few components separately, and has its own specific function to support the 

product. A product consists of a few different modules. The TCO model can be represented with a triple 

(Cs,FMs,P), where Cs = {Ci|i = 1,··· ,n} is a set of the product components, FMs = {FMj|j = 1,··· ,m} is a set 

of the function modules and P stands for the product. Fig. 1(a) shows the tree architecture of the TCO model. 

However, components in a product do not exist in isolation, instead they are related to each other. The 

tree architecture can not representation the interactions among the components, which makes the TCO model 

240



  

inadequate. Graphs have the natural advantage of representing interactions and are used in many filed such 

as social science [16] and biological medicine [17]. Here we propose the PSG (Patent Semantic Graph) 

model to capture the product components’ interactions contained in the related innovation patent text. The 

PSG model can be represented as a graph G = (Cs,Rs), where Cs is the set of components, Rs = 

{(Ci,Cj,Rij)|Ci,Cj ∈ Cs,Rij ∈ R}is the interactions among the components and R is a set of different types of 

relationships defined in the following. In fact, some related works have defined a few types of relationships, 

such as the CFG model [18] which classify the interactions into energy flow, material flow and signal flow. 

However, those relationships are fuzzy and difficult to confirm by automatic methods, which can lead to 

much more cost in building such a knowledge base. The semantic relationships between words is easy to 

define and calculate by automatic methods, which is used in many semantic networks knowledge base [12]. 

Here we define two semantic relationships of different strength: (1) if two component words appear in the 

same sentence in the patent text, it is considered that there is a strong semantic relationships between the two 

components; (2) if two component words appear in adjacent sentences, it is considered that there is a weak 

semantic relationships between the two components; (3) otherwise, there is no semantic relationships 

between the two components. 

 

 

 

 
(a) Illustration of the TCO model  (b) Illustration of the PSG-TCO model 

Fig. 1: The traditional TCO model (a) has a tree architecture. The modified PSG-TCO model (b) combines the PSG 

model and the TCO model, which can capture the interactions among components based on graph. 

The PSG model can be combined with the TCO model to form a modified ontology model called PSG-

TCO, which is illustrated in Fig. 1(b). Although the PSG-TCO model treats the patent product architecture 

into three layers as same as the traditional TCO model, there are some differences between the two. First of 

all, the components layer in PSG-TCO is changed into the PSG instance G instead of the components set Cs. 

Secondly, a function module FMj in PSG-TCO still consists of a few components of the patent product, but 

they are not separate instead related to each other, which can be represented as a subgraph of the PSG 

instance. More specifically, a function module in PSG-TCO is defined as a subgraph consisting of closely 

related components of the PSG instance and has its own function. In this paper, we propose 5 types of 

function modules according to the common functions of invention patents: 

 Dynamic module: Including drive, transmission and action implementation modules; 

 Logistic module: Including material supply, storage, transportation and consumption modules; 

 Information module: Including information collection, interaction, control, calculation and transfer 

modules; 

 Energy module: Including energy other than mechanical energy supply, store, transfer, convert and 

consume modules; 

 Support module: Including support, stability, clamping, positioning modules. 

Additionally, patent attributes such as its name and IPC classification can be added to the product layer 

to describe the patent product. The PSG-TCO model captures the hierarchical architecture and inner 

interactions of patent products, which can provide a more complete structured knowledge to support 

designers in their design space exploration. 
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3. Knowledge Base Construction 

Based on the PSG-TCO model, we propose an automatic knowledge mining method for a large number 

of patent texts. Fig. 2 shows the overview of our method. 

 
Fig. 2: Overview of the proposed automatic knowledge mining method. 

In this section, we will describe the details of the proposed method. Specifically, the patent data source 

used in our research is downloaded from the patent data service system of Chinese National Intellectual 

Property Administration(http://patdata.cnipa.gov.cn/). Patents in other language like english can also be 

easily fitted into this method. We introduce the NLP technologies used to build PSG instances from patent 

texts, the community detection technologies used to extract function modules from related PSG instance, and 

the graph neural networks used to classify function modules. 

To obtain the main components in the related patent product, we use regular expressions to match the 

terms contained in the illustration part as showed in Fig. 3. The main components listed in the illustration 

part of the patent are generally composed of component indexes, component terms, and intervals between 

them: 

 The component indexes may precede or follow the component terms, which usually starts with an 

Arabic digit and consists of Arabic or Roman digits or lowercase English letters. 

 The component terms are mainly composed of Chinese characters and uppercase English letters. 

 The interval between the component index and the component term is not always available, but if 

there is an interval, it is usually represented by a space, a stop, a comma, a colon, a dash, or a period. 

According to the order of component indexes and component terms and whether there are intervals or 

not, we set four kinds of regular expressions to extract component terms from the illustration part of patent 

texts, which are (1) [index][term], (2) [term][index], (3) [index][interval][term] and (4) 

[term][interval][index]. 

 
Fig. 3: An example of the illustration part. 
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To built the PSG instances, we then extract semantic relationships among those components. The rest 

parts such as abstracts, claims, invention contents, and implementations should be taken into consideration 

because of their rich interaction information. In our research, we only focus on the strong semantic 

relationships, which means if and only if two component terms appear in the same sentence of the above 

patent parts, we consider there is a link between the two. This task can be accomplished by simple matching 

and then the PSG instances are built. 

As mentioned in section II, a PSG instance can be decomposed into several function modules, all of 

which are made up of closely related components. These function modules are represented as subgraphs, or 

specifically, communities of PSG instances, which can be extracted by community detection methods. 

Community detection methods proposed for different applications can be divided into 3 categories: 

modularity based methods [19], map equation based methods [20] and stochastic block based methods [21]. 

In our research, we prefer modularity based methods especially the Louvain algorithm [22], because it is 

more suitable for small graphs as PSG instances than map equation based methods, and faster than stochastic 

block based methods. 

Extracted function modules are classified in a supervised manner using graph neural networks (GNNs). 

We experimented with both GCN [23] and GAT [24] for the function modules classification, where the 

adjacency matrix of the function module and the semantic vectors of its components are used as GNNs’ 

inputs. It should be noted that the semantic vectors are given by the related node embeddings [25] of the 

components network, which is constructed using edit distance [26]: if the edit distance between two 

component terms is less than 1, then there is an edge between them. 

We marked 300 function modules manually, 200 of which were divided into training sets and 100 into 

test sets. Table I shows the F1 scores in the test sets. It can be seen that GCN and GAT have different 

performance in different types of function modules. For example, the F1 score of GCN reaches 0.883 in the 

category of support modules, while only 0.582 in the category of energy modules. This may be caused by the 

large difference in the number distribution of different types of function modules. GAT has a good 

performance in all of the types, so it is used to classify the other function modules. 

Table 1:  F1 scores of function modules classification  

 Dynamic Logistic Information Energy Support 

GCN 0.715  0.655  0.799 0.582 0.883 

GAT 0.689 0.667 0.741 0.642 0.754 

An example of PSG instance and it’s function modules are showed in Fig.4. It is a slotting machine and 

it consists of two support modules, two logistic modules and a dynamic module. This architecture conforms 

to the characteristics of slotting machine, a large automatic machine which needs stable support and 

automatic logistics. 

After the above processing, we finally obtained a total of 39,463 PSG-TCO instances, 143,819 function 

modules, and 1,105,431 components. On average, each PSG-TCO instance has 3.6 function modules and 28 

components. Each functional module has an average of 7 components. 

 
Fig. 4: Example of a slotting machine PSG instance and it’s function modules. 
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4. Knowledge Application 

The knowledge base of PSG-TCO instances can provide a multi-granularity innovation stimulation, 

especially for inexperienced novice designers. PSG-TCO instances provide architecture information about 

existing designed products for designers to retrieve and reuse knowledge at product level, module level and 

component level. If we want to design a new product, we can retrieve the existing design in PSG-TCO 

instances searching for innovation chances. Taking the trash can for example, Fig.5 shows three PSG-TCO 

instances of different trash cans. 

 
Fig. 5: PSG-TCO instances of different trash cans. 

The medical waste trash can contains an information module, indicating that it adopts automated 

technology to assist waste delivery, which may be for safety protection. Specifically, the trash can uses two 

photoelectric sensors in the information module to detect the feet of waste delivery personnel. Once it detects 

that someone needs to drop waste, the stepper motor will start and open the lid with a fine gear drive. The but 

trash can is mainly made of traditional power and structure module, and adopts the traditional pedal-type 
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clamshell method, which belongs to pure mechanical structure. The multi-function trash can emphasizes the 

logistics module, which automatically extinguishes smoke by introducing water and provides the function of 

a music player using solar power. 

The results returned by traditional inspection systems such as CNKI are often presented in the form of 

abstract or attached drawings. The pure text abstract makes designers have a hard reading burden, while the 

attached drawings do not adequately represent the structure architecture and function characteristics of patent 

products. In contrast, the patent knowledge represented by the PSG-TCO model is clear, which is more 

convenient for designers to understand the acquired knowledge and make horizontal comparison to find 

innovation chances. On this basis, a more precise combinatorial knowledge retrieval system can be designed 

to assist designers in knowledge localization because the PSGTCO model provides multi-granularity 

information about the PSG and the function modules, because the PSG-TCO model provides multi-

granularity information about the PSG and the function modules. 

5. Conclusions and Prospects 

In this paper, we proposed a multi-granularity knowledge representation method for patent texts. The 

PSG-TCO model makes up for the shortcomings of existing methods in representing the hierarchical 

architecture and component interactions of patent products. On the basis of the PSG-TCO model, we 

proposed an automatic construction method for the corresponding knowledge base to deal with the massive 

and increasing patent data. Firstly, the main components of patent products are extracted from the patent 

illustration by regular expression, and then the semantic relations of them are matched from other parts of the 

patent text to construct PSG instances. Then, the function modules are extracted from PSG instances using 

community detection technologies. At last, GNNs are used to classify extracted function modules to 

supplement category information for supporting quick understanding and accurate retrieval. 

We built a knowledge base from Chinese patent data and showed the help that PSG-TCO instances can 

provide based on a case study. The case study shows that PSG-TCO instances can effectively represent the 

hierarchical architecture and component interactions of patent products. In addition, the visualization of 

graph models is easier and faster for designers to understand existing designs and provides effective 

comparisons between them, which makes designers more convenient to find potential innovation chances. 

In the future studies, we will build corresponding intelligent systems to support design processes and 

provide designers with more convenient and effective interactive experience. 
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